Genetic analyses of Schizosaccharomyces pombe dna2(+) reveal that dna2 plays an essential role in Okazaki fragment metabolism.
نویسندگان
چکیده
In this report, we investigated the phenotypes caused by temperature-sensitive (ts) mutant alleles of dna2(+) of Schizosaccharomyces pombe, a homologue of DNA2 of budding yeast, in an attempt to further define its function in vivo with respect to lagging-strand synthesis during the S-phase of the cell cycle. At the restrictive temperature, dna2 (ts) cells arrested at late S-phase but were unaffected in bulk DNA synthesis. Moreover, they exhibited aberrant mitosis when combined with checkpoint mutations, in keeping with a role for Dna2 in Okazaki fragment maturation. Similarly, spores in which dna2(+) was disrupted duplicated their DNA content during germination and also arrested at late S-phase. Inactivation of dna2(+) led to chromosome fragmentation strikingly similar to that seen when cdc17(+), the DNA ligase I gene, is inactivated. The temperature-dependent lethality of dna2 (ts) mutants was suppressed by overexpression of genes encoding subunits of polymerase delta (cdc1(+) and cdc27(+)), DNA ligase I (cdc17(+)), and Fen-1 (rad2(+)). Each of these gene products plays a role in the elongation or maturation of Okazaki fragments. Moreover, they all interacted with S. pombe Dna2 in a yeast two-hybrid assay, albeit to different extents. On the basis of these results, we conclude that dna2(+) plays a direct role in the Okazaki fragment elongation and maturation. We propose that dna2(+) acts as a central protein to form a complex with other proteins required to coordinate the multienzyme process for Okazaki fragment elongation and maturation.
منابع مشابه
Genetic and biochemical analyses of Pfh1 DNA helicase function in fission yeast.
The Schizosaccharomyces pombe pfh1+ gene (PIF1 homolog) encodes an essential enzyme that has both DNA helicase and ATPase activities and is implicated in lagging strand DNA processing. Mutations in the pfh1+ gene suppress a temperature-sensitive allele of cdc24+, which encodes a protein that functions with Schizosaccharomyces pombe Dna2 in Okazaki fragment processing. In this study, we describe...
متن کاملRad52/Rad59-dependent recombination as a means to rectify faulty Okazaki fragment processing.
The correct removal of 5'-flap structures by Rad27 and Dna2 during Okazaki fragment maturation is crucial for the stable maintenance of genetic materials and cell viability. In this study, we identified RAD52, a key recombination protein, as a multicopy suppressor of dna2-K1080E, a lethal helicase-negative mutant allele of DNA2 in yeasts. In contrast, the overexpression of Rad51, which works co...
متن کاملCoupling of DNA helicase and endonuclease activities of yeast Dna2 facilitates Okazaki fragment processing.
Saccharomyces cerevisiae Dna2 possesses both helicase and endonuclease activities. Its endonuclease activity is essential and well suited to remove RNA-DNA primers of Okazaki fragments. In contrast, its helicase activity, although required for optimal growth, is not essential when the rate of cell growth is reduced. These findings suggest that DNA unwinding activity of Dna2 plays an auxiliary r...
متن کاملTripartite structure of Saccharomyces cerevisiae Dna2 helicase/endonuclease.
In order to gain insights into the structural basis of the multifunctional Dna2 enzyme involved in Okazaki fragment processing, we performed biochemical, biophysical and genetic studies to dissect the domain structure of Dna2. Proteolytic digestion of Dna2 using subtilisin produced a 127 kDa polypeptide that lacked the 45 kDa N-terminal region of Dna2. Further digestion generated two subtilisin...
متن کاملMore tasks for Dna2 in S-phase
Dna2 was first characterized in yeast as an essential gene encoding a protein with both helicase and endonuclease activities involved in maturation of Okazaki fragments during DNA replication. Dna2 also plays a role in double-strand break (DSB) repair by homolo-gous recombination. The respective contributions of its replication and/or repair functions toward cell viability and resistance to gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 155 3 شماره
صفحات -
تاریخ انتشار 2000